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The third-difference approach to modified Allan variance
(MVAR) leads to a tractable formula fc)r a measure of MVAR
estimator confidence, the equivalent degrees of freedom (edf), in
the presence of power-law phase noise. The effect of estimation
stride on edf is tabulated. A simple approximation for edf is
given, and its errors are tabulated. A theorem allowing
conservative estimates of edf in the presence of compound noise
processes is given.

Intro&cticln.-— —

The ingredients for this work were presented three years ago
at this Symposium. The first ingredient, a paper by the present
author [6] , shows how the labor of computing mc)dified Allan
variance (MVAR) estimates can be reduc:ed by expressing MVAR in
terms of third differences of the cumulative sum of time
residuals. This approach shows that an MVAR estimate is hardly
more difficult to compute than a conventional Al Ian variance
(AVAR) estimate. A review of the method is given below. The
second ingredient is a paper by Kasdin and Walter [10] on
simulating a class of discrete-time power-law noises. In a
subsequent paper [12], Walter exploits these nc)ise models to
derive a formula for the variance of a fully overlapped MVAR
estimator. Combined with a formula for the estimator mean (MVAR
itselfj , this formula can be used for computing an estimator
confidence measure, the eauivalem deqrees Qf f~ea (@df,
defined” below) . In turn, edf can be used for assigning
confidence intervals.

Walter’s expression is difficult to evaluate. Happily, the
combination of Walter’s models with the third-difference approach
has led to another formula for edf, mathematically equivalent to
Walter’s formula, but easier to evaluate because it has fewer
summation terms. This formula i.s given below, together with
additional results as follows.

● An assessment of the dependence of the edf of an MVAR
estimator on its estimation perj.od T3 , defi.necl  as the time

interval by which the summands of the estimatc)r  are shifted. It
turns out that a wide range of choices of 7 ~ gives essentially
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the same edf. The user can choose 71 from considerations of

convenience and computational effort.
● A simple approximation formula for edf, with coefficients

drawn from a brief lookup table. Most users will not need the
exact edf formula.

● A theorem that allows one to calculate conservative values
of estimator edf in the presence of a polynomial phase noise
spectrum, i.e. , linear combinations of power laws with unknown
coefficients. This theorem is also valid for AVAR estimators,
but is more useful for MVAR estimators because their edf varies
less with power-law noise exponent.

The most critical assumption underlying these results is a
negligible rate of linear frequency drift, or a drift rate that
is known Q priori; in this case, it can be removed from the data.

This paper mainly gives results; a longer paper with more
derivations [7] has been submitted elsewhere.

Third-Difference Formulation———

Let xl, X2, . . , with sample period To, be a sequence of

time residuals obtained from a comparison of clocks or from a
phase comparison of two frequency sources. The conventional
Allan variance for an averaging time 7 = m~o is defined by

a;(r) = —~z E[A:,xn]2,
2?

(1)

where E denotes mathematical expectation (ensemble average) , and
Am is the backward difference operator with step m, that is,

A f = f - fr,_m,m n n

A2f = fn - 2f + fn_2m,m n n-m

for any sequence fn.

For the modified Allan variance, define the moving averages
of X n b y

.

m-1

z
Xn(m) = ~ xn_j.

j=()

‘l’he conventional definition of MVAR is

2



(2)

The third-difference formulation of MVAR uses an auxiliary
sequence Wn of cumulative sums of Xn, defined by

n

‘O = 0’ ‘n “ z ‘j”
j=l

(3)

This sequence can be generated from the recurrence Wn = wn_l +

Xn ● Observe that

When this is substituted into (2) , the difference operators
multjply to give

1 [ 1mod a~(~) = —--———— E A~wn 2
‘ ~2m2

1

[ 1

2=
‘ ~2m2 E Wn - 3Wn-m + 3Wn_2m - wn_3m .

(4)

This is the third-difference form of MVAR. The. advantage of (4)
over (2) is that it expresses MVAR in terms of four values of Wn

instead of 3m values of Xn.

MVAR Estimator with Stride

To estimate MVAR with limited data, we replace the E
operator in (4) by a finite average over n. For such a time
average, we have to decide how much tc~ increase n from one term
to the next. This increase, denoted here by m,, is called the

estimation stride. The corresponding time shift T1 = ml~o is

called the estimation period. When cc>mputing AVAR from (1) , it
is customary to use ml = 1, called “full overlap”, or ml = m,

called “T overlap”. The effect of these choices on AVAR
estimator confidence has previously been computed ([5] and
references therein) . In the context of MVAR, the overlap
formalism becomes awkward, and is replaced here by the stride
formalism. The existing literature on MVAR ([1], for example)
customarily assumes” a stride of 1 (with good reason, as we shall
see later) . Here, we shall allow ml to vary between 1 and m, and

investigate the effect on the confidence of the resulting
estimator.
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Suppose that N time residuals xl, X2, . . , XN are available.

From these come N+l cumulative sums WO, WI, . . , WN, and N-3m+l

samples of A~wn, 3m f n < N. Let M be the number of samples of

A~wn that are separated by the stride ml.

(N - 3m + m.
M = int —-m-—d

1

Then

t

where int(x) is the qreatest integer that is < x. The MVAR
estimator ’to be studied is given by

M-1

v= 1
~ ~2m2M 2[

A:w3m+km

k==O ‘ 1

Equivalent Deqrees @ Ereedom

2 .

(5)

(6)

One measure of the statistical confidence of an estimator X
is its equivalent deqrees ~ freedom (edf) , defined by

2(EX)2edf X == Var x—. (7)

Higher values of edf mean that the distribution of X is more
concentrated about its mean. If X is distributed as a constant
multiple of a chi-squared random variable with v degrees of
freedom, then edf X = v. Even if X dc)es not have such a
distribution, edf X can still serve as a convenient dimensionless
measure of the confidence of X as an estimator of its mean. In
this case, edf X need not be an integer. I take this point of
view with regard to V, not having studied the nature of its
distribution under the noise models discussed below. In
frequency-stability analysis, it is customary t.o assume that
estimators of AVAR or MVAR obey an approximate chi-squared law,
and, on this basis, to construct confidence intervals for AVAR or
MVAR [9][15) from levels of the appropriate chi-squared
distribution function.

Noise Models

The statistical properties of V, its edf in particular,
depend on the random process chosen tc~ model the time residuals
Xn . The classical continuous-time spectral model for phase or

time deviations is a linear combination of power laws:
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(8)

whose components, for ~ = 0,-1,-2,-3,-4, are called white phase,
flicker phase, white frequency, flicker frequency, and random-
walk frequency. (The plus sign indicates one-sided spectral
density.) It is understood that there is some high-frequency
cutoff , the ‘Ihardware bandwidth”, and that the power-law

components of (8) might only behave ~sym~totically like fB asf+
o. Bernier [2] studied the behavior c}f MVAR for each of these
spectral components, tackling the complex interaction among the
hardware bandwidth B, the sample period To, and the averaging

time T.. Here, we follow Walter [12] in using explicit discrete-
time power-law models for the samples Xn of the time residual

process. These are the so-called frac~a~-~i~ference  Processes
[3][8], which have one-sided spectral densities proportional to

PSj(f) = 2[2 sin(7rfTo)]  , f < . ..L.
2 ? . ”

(9)

Nonintegral values of ~ are allowed.
There are two reasons for using these models here. First,

the abovementioned complications of sampling the continous-time
models are avoided. Second, the models fit perfectly into the
MVAR third-difference framework. In particular, the sequence Wn

defined by (3) is also a fractional-difference process with
exponent @-2, that is,

s:(f) = 2[2 sin(xf~o)] &2* (lo)

Now , since MVAR has been given in terms of Wn, there is no need

to use xn in the theory.

Generalized Autocovariance

The frequency-domain description (10) of the model for Wn

has an equivalent time-domain description, called the generalized
autocovariance (GACV) and denoted by Rw(n) , where n runs through

all integers, positive and negative. The concept of
autocovariance (ACV) as a function of one time variable applies
to stationary processes only. With some care, though, it can be
extended to certain nonstationary processes in such a way that
their covariance properties can be described in terms of a
function, the GACV, that still depends on one time variable.
Although the GACV cannot be regarded as a covariance function in
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the usual sense, it can be used like c)ne under certain
restrictions.

Because the GACV Rw(n) plays a central role in the formula

for edf V given below, we give this function here for all the
required values of ~, namely -4 ~ P < 0. Bear in mind that the
noise-type label applies to Xn, a power-law process with exponent

~, while Rw (n) applies to a power-law process Wn with exponent

&2. For the flicker noises we need an auxiliary sequence Ln, a

discrete version of the logarithm, defined by

n

Following are the required GACV formulas.

P = O; white phase
Rw(n) = c~~l

o
~ = -1; flicker phase

[: -  71LblRw(rl) = 2;;0 4

~ = -2; white frequency

Rw(n) .:ld.u<l
127-0

~ == -3; flicker frequency

[A-’’FILlnlnlRw(n) = 2;:T0 4

~ = -4; random-walk frequency

~ nonintegral
-1’(1-~/2+n)

Rw(n) = --—-— — .—..—
270 COS(Tp/2) r(2-p) r(p/2+n)

The formula” for nonintegral ~ is equivalent to the form used by
Kasdin and Walter [10] and by Walter [12], but for the GACV of
x not of wn.n’

Additional Mathematical Assumptions

For,technical correctness, i.t is assumed that the the time
residuals Xn have stationary, Gaussian, mean-zero second

increments. Assuming that these increments have zero mean is the
same as assuming that the frequency drift rate is zero.
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Results

MVAR Estimator edf: Exact Formu.11

In the estimator defined by (5) and (6), recall that the
averaging time is m~O, and that the estimation period is ml~O.

For nonnegative integers n, let

R n = -Rw(n-3m) + 6Rw(n-2m)

- 15Rw(n-m) + 20Rw(n) - 15Rw(n+m)

+ 6Rw(n+2m) - Rw(n+3m).

6In other words, Rn = -6~Rw(n) , where fim is the sixth central

difference operator with step m. Actually, Rn is just the

(11)

ordinary ACV of the stationary process

R
fn =  #f

o

A 3
W Letm n“

the corresponding autocorrelation sequence. The formula for edf
V is given by

[

M-1
1 =;1+2z[l~1- k 2

edf V ~ ‘kml “
k=l

(12)

This formula is mathematically equivalent to Walter’s formula for
var V ([12], eq (32)) , but requires less computation. Evaluation
of (12) requires 7M evaluations of Rw(n). Walter’s formula,

which is given only for ml = 1, is a ciouble sum requiring

5(2m-1) (2M-1) evaluations of the GACV of Xn. ‘I’his shows the

advantage of the third-difference approach, which derives MVAR
estimatot summands from four values of Wn instead of from 3m

values of Xn.

In c~nnection with a recent conference paper [15], tables of
edf V for m 1 = 1 and integral @ were generated by the method

given here, by Walter’s method, and by Monte Carlo simulation.
The two theoretical methods agreed within 0.1 percent; the
simulations agreed with the theoretical results within a few
percent.
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~ note QLI computat@: The ACV Rn tends to zero as n -i CD,

yet is obtained from differences of Rk,(n) , which tends to 01 with

n. Clearly, one should use double precision for evaluating (11).
Even so, the computed values of Rn can deteriorate for large n,

especially for nonintegral ~, where Rw(n) involves ~ functions.

I was able to cure this problem by replacing the upper limit M-1
of the summation in (12) by K-1, where K = min(M,lOm/ml).. (In

all actual computations, m/ml is assumed to be an integer. )

Effect m Estimation Period

From ‘here on, we assume that the estimation period divides
evenly into the averaging time, that js, we have

.

-T m— = —— == ~.
t

‘1 ‘1

where r is an integer. Under this assumption, (12) was used to
generate tables of edf V for combinations of N, m, and ml. For

each combination, the number M of estimator summands is
calculated from (5) , and the parameter p is defined by

(13)

A selection of edf values is shown in Table 1 for integral values
of p. Values for half-integral ~ were also computed, but are not
shown; as expected, they interpolate the given values. For now,
ignore the “%” rows, and observe how edf depends on r (or ml) for

N = 1024; m fixed. For each ~, and fc)r m ~ 4, it is clear that
any value of r between 4 and m gives a value of edf that is
nearly maximal for that m and /?. If m < 4, then we should take

‘l= To(ml=l’r=m)” For @ ~ -2, an estimation period of r

(ml = m, r = 1) gives inferior results. Here is an empirical

result that summarizes the observations.

Assum”e ~ averaqin~ time r & most l/4~ ~.~ duration Q &h!2
time-deviation record. For each power law between white p-
~random-walk frequency, ~. estimation peri.o~ T1 between To

~ max(~o, T/4) that divides evenly. &l&Q 7 g~.y.~s @n U

estimator V whose ~ & within 8 p_ercent Q.C &.bg maximal value
& 7-.

Table 1 shows that the variation of edf V with r is greatest
for white phase (P = O). Also, we see that p itself is a rough
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estimate of edf V, especially for ml in the recommended range 1 f

ml < max(l,m/4).

The choice of estimation period 71 might depend on a

tradeoff b,qtween convenience and computational effort. For small
data sets that are held entirely in memory, the minimal choice ml

= 1 is convenient, and the computational cost is probably
negligible. For larger data sets that. are read sequentially from
a file, the maximal choice ml = m/4 allows sequential

accumulation of MVAR sums from the stream of Wn with moderate use

of memory. As an example, take m = 32, ml = 8. To update the
. .

sum of squares of A~2wn at every eighth sample of Wn, the program

has to remember the previous 12 values of w8j” Alternatively, if

there are ma”ny thousand data points, cme can simply use ml = m to

accumulate sums of squares of third dj.fferences  for smaller
values of m, while collecting a global buffer c)f Wn subsampled by

some factor m.. After all the data are read, the buffer is used

for calculati~g MVAR

r.

MVAR Estimator edf:

estimates with m3 = m2, m = rml for various

Approximate Formula

Because the power-law models are only an approximate fit to
actual phase noise, the precision of the theoretical values of
edf V in Table 1, four significant figures, is meaningless for a
user who needs to construct error bars for MVAR measurements.
Therefore, the following simple approximation is offered as an
empirical result.

Assume power-law phase noise with exponenk ~ between -4
(random-walk ~- 0 (white phase) , Q.!. 1- 16 &&I@-
residual points, ~ ~eraqing time z a& most I/5&h ~ duration
~ &l~ measurement, Q@ m estimation period 71 between To -

max(~o,~)4) that divides evenly into r. ~~ ~~.z notation, N ~ 16,

m $ N/5,”@ m = rml, where r @ ZNI inteqer k~tween min(m~4) @

m. For the estimator V defined W _@) , Ke &Nf?

aop
edf V N —-—a—, (14)

1--;

where p = M/r, M & qiven Q! @A and the ~~e~-f~~ients ao, all EL=

functions ~ m w ~, ~ drawn from Table. 2..
~ relative error @ this ~proximation & observed @ &

& most +11.1 percent.
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Each “.%” row in Table 1 shows the percentage errors of (14)
for the row above. The table entries were chosen to represent the
full range of. observed errors. This approximation holds only
under the above restrictions on data set size and averaging time.
For example, if m = N/4 then the exact edf formula (12) must be
used.

This approximation was derived from two rigorous lower bound
formulas, one for edf V, the other for the edf of a continuous-
time analog of V. The choice between these two bounds as
approximations was made partly by insight, partly by trial and
error.

ComDound Noise Spectra

The foregoing results assume a pc)wer-law phase noise
spectrum proportional to (9) for some fixed exponent ~. If that
were indeed the case, our statistical efforts ought to be
directed.toward  estimating the two-parameter set consisting of D
and the constant of proportionality. Instead, as usual, we find
ourselves using parametric tools to evaluate the confidence of a
nonparametric statistic. The value of edf V depends on ~. What
can we do in the presence of a compound phase noise model

s:(f) =
z

go sin~(2TfTo),

a finite sum of fractional-difference spectra?
given by the following theorem, which, although
obvious, is better than nothing.

(15)

Some help is
weak and perhaps

Theorem. Let the phase noise bg Q Qnitg ~ @ independ-
~= noises * stationa~ -sti aa~.-= second
increments. Form ~ MVAR estimator V from the qiven phase noise,

corresponding estimators Vk from ~k components.  _Then

edf V ~ min edf Vk.
k

In other words, we never do worse than the worst component.
To apply this theorem to the situation (15), assume that the

component ~ values are all in some subinterval  of [-4,0] (the
whole range, perhaps) . Use (14) and Table 2 to compute edf V

D
for each “tabulated ~ in the subinterval, and take the smallest
value as a conservative estimate of edf V. For example, if one
believes that the noise has components between white phase and
flicker phase, perhaps from prior knowledge, perhaps from a log-
log a-r plot with slopes between -3/2 and -1, then one can
minimize (14) over the first three rows of Table 2.

This theorem can be generalized to AVAR estimators and other
situations involving averages of the square of a stationary
Gaussian mean-zero process. Its usefulness for MVAR, as opposed
to AVAR, is enhanced by the relatively weak dependence of MVAR
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estimator .edf on ~, as can be seen in Table 1. Similar tables
for fully overlapped AVAR estimators [5][11] show a sharper
dependence on ~, especially for large T/TO. Thus , minimizing

estimator edf over ~ causes a smaller loss of accuracy for MVAR
than for AVAR.

The previous paper on the third-difference approach [6]
showed that MVAR estimates are almost as easy to calculate as
AVAR estimates. The results given here extend this conclusion to
the exact formulas for the confidence of the estimators. In
addition, the approximation formulas for MVAR confidence are
simpler and more uniform than existing approximation formulas for
AVAR confidence [5][9], and the confidence values are more robust
to spectral uncertainties. Having overcome the apparent increase
in complexity of the extra moving-average filter in MVAR, we are
free to enjoy all its advantages.

The problem of frequency drift removal now needs to be
addressed. For AVAR, it is known that estimation of drift rate
from the. data themselves, and removal therefrom, causes negative
estimator bias that worsens as averaging time 7 increases. The
use of three-point [13] [14] or four-pc)int  [4] drift estimators,
which extract a quadratic component of the time-residual sequence
Xn , simplifies the calculation of the mean and variance of AVAR

estimators with drift removed. 1 have no doubt that similar
calculations for MVAR estimators can be made by using four-point
drift estimators that extract a cubic component of the
cumulative-sum sequence wn.

The work described in this paper was performed by the Jet
Propulsion Laboratory, California Institute of Technology, under
a contract with the National Aeronautics and Space
Administration.
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Table 1. Values and Approximation Errors for MVAR Estimator edf

N = 1024 P
—.—. — ——— .- —-.

m r ‘1 M P 0.0 -).0 - 2 . 0 - 3 . 0 - 4 . 0
-.--—... __._— ——— . . . .

1. 1

2 1
2

3 i
3

16 1
2
4

8

16

128 1
2
4

8

16

. 32

64

128

N = 16

1

2

3

.

1

2

3

1 1022

2 510
1; 1019*

3
1

16
8
4

2

1

128
64
32

16

8

4

2

1

1

1

1

339
1016

62
123
245

489

977

6
11
21

41

81

161

321

641

14

11

8

1022.

53.0.0
509.5

339.0
338.7

62.00
61.50
61.25

61.13

61.06

6.000
5.500
5.250

5.125

5.063

5.031

5.016

5.008

14.00

5.500

2.667

525.9
+0.0

262.6
477.0
-0.1

174.6
373.9
+11.1

32.15
58.06
72.74
+4 .1

77.60
-2.6

78.88
-4.3

3.375
5.754
7.005

+-3 .4
7.354
-3.6

7.410
-5.3

7.405
-5.8

7.394
-5.9

7.386
-5.9

7.475
-3.7

5.754
-10.6
3.815
+9.9

589.3
+0.0

310.1
496.5
-0.1

210.3
349.9
-2.8

39.57
59.26
61.99
+().1

62.26
-0.6

62.26
-0.7

4.061
5.841
5.922
+().4

5.840
-0.3

5.-/84
-0.4

5.-/55
-0.4

5.739
-0.4

5.”132
-0.4

8.327
-3.1

5.946
-10.0
3.526
-2.0

681.6
+0.0

380.8
515.2
-0.1

260.1
341.5
-3.9

48.69
59.68
59.93
-0.2

59.84
-0.2

59.78
-0.2

4.909
5.857
5.706
-0.1

5.599
-0.3

5.542
-0.4

5.513
-0.4

5.498
-0.4

5.491
-0.4

9.561.
-2.4

6.117
-9.2

3.386
-3.0

828.6
+0.0

459.1
523.6
-0.1

304.4
334.6
-4.1

55.29
58.73
58.57
-0.3

58.46
-0.3

58.40
-0.3

5.552
5.716
5.525
-2.3

5.417
-2.5

5.361
-2.6

5.332
-2.6

5.318
-2.6

5.311
-2.6

11.51
-1.4

6.146
-8.1

3.224
-7.2

1022.
+0.0 %

432.3
441.4
-0.1 g

271.0
274.0
-5.0 %

47.55
47.60
47.43
-0.2 %

47.33
-0.2 %

47.29
-0.2 %

4.766
4.535
4.367
+0.2 %

4.277
+0.0 %

4.231
+0.0 %

4.207
+0.0 %

4.196
+0.0 %

4.190
+0.0 %

14.00
+0.0 %

5.061
-5.9 g

2.508
-3.5 %

noise type:
——-—-— ——— ---
wh nh fl ~h wh fr fl fr rw fr
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. .
c ‘Table 2. “Coefficients for Approximating MVAR Estimator edf

m—-——.-— ———.. .
noise 1 2 >2
type B a. al a. al a. al———. _-—.— _——...—
wh ph 0.0 .51429

-0”.5 .54277
fl ph -1.0 .57640

-1.5 .61688
wh fr -2.0 .66667

-2.5 .72948
fl fr -3.0 .81057

-3.5 .91389
rw fr -4.0 1.0000

0 .93506
. 95407
.97339
.99246
1.0101
1.023-7
1.0266
. 99981
.86580

0 1.2245
1.0739
1.0030
.97”732
.96774
.96102
.94663
. 90604
.76791

. 58929

. 59605

.60163

. 59769

.57124

. 50974

.41643

. 34276

.41115
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